
 非慣性系における慣性力の角度補正モデル（西山モデル） 

 

Angular Correction Model for Inertial Force in Non-inertial Frames (Nishiyama Model) 

 

 概要（Abstract） 

 

本研究では、従来の慣性力の定義 

\vec{F_I} = -m\vec{a} 

に対し、非慣性系での角度成分を考慮した角度補正係数 k を導入する。 

これにより、加速度ベクトル \vec{a} と慣性力ベクトル \vec{F_I} のなす角度 \theta を

変数として、 

力の方向・大きさを動的に最適化することが可能となる。 

 

This study introduces an angular correction coefficient (k) into the traditional definition of 

inertial force, allowing for dynamic optimization of the inertial force vector direction and 

magnitude in non-inertial frames. 

 

 基本式（Basic Equation） 

 

標準的なニュートンの第 2 法則は次式で表される： 

\vec{F} = m\vec{a} 

 

非慣性系では、慣性力（見かけの力）が次のように定義される： 

\vec{F_I} = -m\vec{a} 

 

ここに角度補正係数 k を導入することで、次のように一般化する： 

\vec{F_I} = -k m \vec{a} 

 

ここで、 

• m：質量（mass） 

• \vec{a}：加速度ベクトル（acceleration vector） 

• k：角度補正係数 k = \cos\theta または k = f(\theta) 

• \theta：外力方向と慣性力方向のなす角度 



 

 3 次元ベクトル分解（3D Vector Decomposition） 

 

1 次元または 2 次元では不十分であるため、3D 空間で次のように表す： 

\vec{a} = a(\cos\theta_x, \sin\theta_x\cos\theta_y, \sin\theta_x\sin\theta_y) 

 

すべての慣性力を角度 \theta_i で同期させることにより、次を実現する： 

\sum_i m_i \vec{a_i} = 0 

 

これにより、慣性の中和（Zero-G 状態） を実現する理論的条件が導かれる。 

 

 行列による表現（Matrix Representation） 

 

回転行列を用いると、慣性力は次のように記述できる： 

\vec{F_I} = -m \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta 

\end{pmatrix} \vec{a} 

 

この行列表現により、慣性ベクトルと加速度ベクトルの角度的補正を厳密に扱うことがで

きる。 

 

 数値最適化（Numerical Optimization） 

 

角度 \theta は解析的に求めにくいため、Python などを用いて数値的に最適化する。 

推奨される関数ライブラリは以下の通り： 

from scipy import optimize 

result = optimize.minimize(function_of_theta, initial_guess) 

 

 

最適化の目的関数として、慣性ベクトルと加速度ベクトルの内積を最小化する： 

\min_\theta \, |\vec{F_I} + m\vec{a}| 

 

これにより、慣性力と加速度の完全中和（Zero Inertial Vector Condition）が得られる。 

 



 結論（Conclusion） 

 

本モデル「西山モデル（Nishiyama Model）」は、 

従来の慣性力の式 F=ma を拡張し、角度依存性を導入することで、 

非慣性系の慣性補正・中和を理論的に実現する新たな枠組みを提案する。 

 

これは、Zero-G 慣性制御装置やリニア場制御理論への応用が期待できる。 
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